当前位置: 首页 > 物联网百科 > 产品百科 > 查看详情
开关电源
来源:作者:日期:2015-01-14 16:33:36点击:6858次

开关电源1是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间

目录

  • 开关电源的工作原理
    • 开关电源的三个条件
      • 开关电源的分类
        • 开关电源技术的发展动向
          • 提高开关电源待机效率的方法

开关电源的工作原理

开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线形电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。
与线性电源相比,PWM开关电源更为效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压组数。最后这些交流波形经过整流滤波后就得到直流输出电压。
控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之出在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。
开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。

开关电源的三个条件

开关

电力电子器件工作在开关状态而不是线性状态

高频

电力电子器件工作在高频而不是接近工频的低频

直流

开关电源输出的是直流而不是交流 也可以输出高频交流如电子变压器

开关电源的分类

人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,也有AC/AC DC/AC 如逆变器 DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。

开关电源技术的发展动向

开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体(Mn?Zn)材料上加大科技创新,以提高在高频率和较大磁通密度 (Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。
模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。
电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有中国特色的产学研联合发展之路,为我国国民经济的高速发展做出贡献。

提高开关电源待机效率的方法

切断启动电阻

对于反激式电源,启动后控制芯片由辅助绕组供电,启动电阻上压降为300V左右。设启动电阻取值为47kΩ,消耗功率将近2W。要改善待机效率,必须在启动后将该电阻通道切断。TOPSWITCH,ICE2DS02G内部设有专门的启动电路,可在启动后关闭该电阻。若控制器没有专门启动电路,也可在启动电阻串接电容,其启动后的损耗可逐渐下降至零。缺点是电源不能自重启,只有断开输入电压,使电容放电后才能再次启动电路。

降低时钟频率

时钟频率可平滑下降或突降。平滑下降就是当反馈量超过某一阈值,通过特定模块,实现时钟频率的线性下降。

切换工作模式

1.QR→PWM对于工作在高频工作模式的开关电源,在待机时切换至低频工作模式可减小待机损耗。例如,对于准谐振式开关电源(工作频率为几百kHz到几MHz),可在待机时切换至低频的脉宽调制控制模式PWM(几十kHz)。
IRIS40xx芯片就是通过QR与PWM切换来提高待机效率的。当电源处于轻载和待机时候,辅助绕组电压较小,Q1关断,谐振信号不能传输至FB端,FB电压小于芯片内部的一个门限电压,不能触发准谐振模式,电路则工作在更低频的脉宽调制控制模式。
2.PWM→PFM
对于额定功率时工作在PWM模式的开关电源,也可以通过切换至PFM模式提高待机效率,即固定开通时间,调节关断时间,负载越低,关断时间越长,工作频率也越低。将待机信号加在其PW/引脚上,在额定负载条件下,该引脚为高电平,电路工作在PWM模式,当负载低于某个阈值时,该引脚被拉为低电平,电路工作在PFM模式。实现PWM和PFM的切换,也就提高了轻载和待机状态时的电源效率。
通过降低时钟频率和切换工作模式实现降低待机工作频率,提高待机效率,可保持控制器一直在运作,在整个负载范围中,输出都能被妥善的调节。即使负载从零激增至满负载的情况下,能够快速反应,反之亦然。输出电压降和过冲值都保持在允许范围内。

可控脉冲模式

(BurstMode)
可控脉冲模式,也可称为跳周期控制模式(SkipCycleMode)是指当处于轻载或待机条件时,由周期比PWM控制器时钟周期大的信号控制电路某一环节,使得PWM的输出脉冲周期性的有效或失效,这样即可实现恒定频率下通过减小开关次数,增大占空比来提高轻载和待机的效率。该信号可以加在反馈通道,PWM信号输出通道,PWM芯片的使能引脚(如LM2618,L6565)或者是芯片内部模块(如NCP1200,FSD200,L6565和TinySwitch系列芯片)。