数字电位器
来源:作者:日期:2017-12-20 15:04:36点击:9102次
数字电位器WDH22也称为非接触式电位器,是一种用数字传感器检测转轴的角度变化,并将这个角度变化用多种信号类型反馈输出的器件。
 
中文名 外文名 规格种类
数字电位器 DigitalPotenTIometer 单路数字电位器多路数字电位器
 
目录
 
1、数字电位器的简介
2、数字电位器的作用
3、数字电位器工作原理
4、数字电位器的优点
5、数字电位器的选型
6、数字电位器设计考虑
7、区分数字电位器的性能
8、数字电位器的应用
9、数字电位器缺点的解决方法
 
 
 
数字电位器的简介:
数字电位器(DigitalPotenTIometer)亦称数控可编程电阻器,是一种代替传统机械电位器(模拟电位器)的新型CMOS数字、模拟混合信号处理的集成电路。数字电位器由数字输入控制,产生一个模拟量的输出。依据数字电位器的不同,抽头电流最大值可以从几百微安到几个毫安。数字电位器采用数控方式调节电阻值的,具有使用灵活、调节精度高、无触点、低噪声、不易污损、抗振动、抗干扰、体积小、寿命长等显著优点,可在许多领域取代机械电位器。
 
 
数字电位器的作用:
数字电位器是由数字输入控制的模拟输出,类似于数/模转换器(DAC)的定义。和DAC不同的是,DAC提供经过缓冲的输出,而绝大多数数字电位器在没有外部缓冲器的情况下不能驱动低阻负载。
对于数字电位器,最大抽头电流范围为几百微安到毫安级。当数字电位器的抽头连接到低阻负载时,无论是可变电阻还是真正的数字电位器,一定要确保在最糟糕的工作条件下抽头电流处于可接受的IWIPER范围。
可变电阻的最差负载发生在VW接近VH时。在这个点上,电路中除抽头电阻以外可能没有其它电阻限制电流。但是,有些应用中可能要求很大的抽头电流,这种情况下,需要重点考虑电位器抽头的压降,这个压降限制了数字电位器的输出动态范围。
对于需要温度补偿的电压或电流调节,如光模块的光驱动器偏置,可以选择基于查找表的可变电阻。一些数字电位器集成了EEPROM (用于存储温度变化时的校准数据)和内部温度传感器(用于测量环境温度)。
数字电位器按照测量温度在查找表中检索到对应的数值,调整可变电阻。基于温度查找表的数字电位器通常用来修正电路元件的非线性温度响应,如激光二极管或光电二极管;也可以根据应用需要,有意建立一个非线性电阻的温度响应。
 
数字电位器工作原理:
 
       
 
如图所示为数字电位器的内部简化电路,将n个阻值相同的电阻串联,每只电阻的两端经过一个由MOS管构成的模拟开关相连,作为数字电位器的抽头。这种模拟开关等效于单刀单掷开关,且在数字信号的控制下每次只能有一个模拟开关闭合,从而将串联电阻的每一个节点连接到滑动端。
 
数字电位器的数字控制部分包括加减计数器、译码电路、保存和恢复控制电路和不挥发存储器等4个数字电路模块。
 
利用串入、并出的加/减计数器在输入脉冲和控制信号的控制下可实现加/减计数,计数器把累计的数据直接提供给译码电路控制开关阵列,同时也将数据传送给内部存储器保存。当外部计数脉冲信号停止或片选信号无效后,译码电路的输出端只有一个有效,于是只选择一个MOS管导通。
数字控制部分的存储器是一种掉电不挥发存储器,当电路掉电后再次上电时,数字电位器中仍保存着原有的控制数据,其中间抽头到两端点之间的电阻值仍是上一次的调整结果。
 
 
数字电位器的优点:
数字电位器的最大的优点在于数字电位器的使用寿命。一般的机械电位器使用寿命较低,很多使用数千次后就出现磨损,失效等异常。而数字电位器一般以百万次为单位。
 
通过将电位器中心抽头与高端或低端相连,或使高端或低端浮空,数字电位器能配置成2端可变电阻。与数/模转换器不同,数字电位器能将H端接最高电压或最低电压端。
 
数字电位器的选型:
如果你的系统中如果需要多个数字电位器的话,可以考虑选型集成多个数字电位器的芯片,如CAT5221,CAT5241等;
如果你的系统要求电位器的分辨率要求比较高的话,可以选择滑片数目多一些的电位器,比如CAT5251等,当然,也可以使用两个数字电位器串联达到这个目的;
对于带缓冲器输出的电位器,输出是一个电压值,而不是一个电阻值,所以如果用于运放反馈回路上的电阻的话,是不合适的,这个时候应该选择不带缓冲器的;
如果你的系统重新上电时,希望能阻值能够恢复上一次掉电时的阻值,则要选择非易失性的数字电位器;
对于变化的信号,还要考虑器件的频率响应相关参数。
 
 
数字电位器设计考虑:
使用数字电位器的最大限制是电位器端点的电压,通常该电压必须保持在VCC和GND之间,以避免ESD结构内部的二极管将音频信号嵌位。当VCC在规定的范围(2.7~5.5 V)内时,DS3903的ESD结构允许输入信号处于6 V与GND之间,这一特性对于要求输入信号大于VCC的应用非常灵活。但是,在图l所示电路中并未处理6.0 VP-P信号,因为运放电源低于6 V时将会嵌位信号。如果运算放大器能够采用更高的电压供电,即可使用DS3903的大信号处理功能。
电位器抽头的变化形式(线性或对数)决定了电路截止频率的线性调节或对数调节形式。对于图l所示音频范围的滤波电路,为保证在40~800 Hz之间提供尽可能多的截止频率设置,采用线性电位器比较合适。
电位器的分辨率(如128或256抽头)决定了截止频率的调节精度,抽头数越多,截止频率的调节精度也越高。对于音频应用,不太可能使用64或128抽头以上的电位器来设置低通滤波器的截止频率。对于宽带应用则要求更多的电位器抽头。
一些数字电位器采用非易失存储,能够在没有电源供电时保持抽头位置。这种特性可用于保存校准后的滤波器位置,而在上电时不再调整滤波器设置。易失电位器总是从一个预置位置启动,电路在被修改之前将一直保持默认位置。
数字电位器的端到端电阻和滑动电阻具有较宽的公差,图l所示电路中的两个电阻(POTO和POT2)则保持相等,因为这两个电阻制作在同一硅片上。电位器的实际阻值差别较大,通常端到端电阻的变化范围是±20%,但它们的相对值基本保持稳定。
另外,数字电位器内部也具有一定的寄生电容,这会限制最大截止频率。截止频率大于500 kHz时,不推荐使用10 kΩ的数字电位器,也不建议将50 kΩ数字电位器用于100 kHz以上的设计或将100 kΩ的数字电位器用于50 kHz以上的设计。对于音频应用,所选择的电位器能够提供足够的带宽,但对于宽带应用,必须慎重考虑这一因素。
 
区分数字电位器的性能:
数字电位器,或digipot,方便了模拟电路的电阻、电压以及电流的数字控制和调整。数字电位器通常用于电源校准、音量控制、亮度控制、增益调节以及光模块的偏置/调制电流调节。数字电位器除基本功能外,还提供许多其它功能,以增强系统性能,简化设计。这些功能包括:不同类型的非易失存储器、过零检测、去抖动按键接口、温度补偿和写保护。这些功能针对不同的应用而设计。
 
数字电位器的应用:
 与机械式电位器相比,数字电位器的另一优势是可以直接安装在电路板的信号通道上,而不需要复杂、昂贵的机械与电控的整合方案。数字电位器可提高电子噪声抑制能力,不存在机械电位器连线拾取的干扰信号。传统的数字电位器只是简单地直接取代机械式电位器,它们具有相同的使用方法,因而无需做过多的说明。然而,对于特殊用途的器件,(如低成本立体声音量控制),使用时可能会出现一些特殊问题。
 数字电位器可以提供对数和线性变化函数,对数变化的数字电位器常用于Hi-Fi音频设备中的音量调节,可为具有非线性响应特性的人耳建立一个线性变化的音量控制。目前,高度集成的数字电位器可以在单芯片内提供六个独立的电位器,并支持多声道音频设备,如立体声、环绕杜比系统等。对于音频设备,需要注意每一级抽头位置的瞬变过程,如果抽头位置没有精确地切换到0V,音频信号会带有噼啪声和砰然声。幸运的是,新一代数字电位器包含的过零检测功能(如DS1802)可确保在检测到过零(0V)或50ms延迟时改变抽头位置,从而可降低抽头位置瞬变时的音频噪声。
新一代的DS1802音频电位器包含了两个数控电位器,对数抽头,每级变化1dB。最大衰减量为63dB。此外,它还带有静音功能,可将信号衰减90dB。DS1802有四个按键输入,可用于音量/平衡控制。合理利用其过零检测器,能够实现音量的无缝调节,以得到纯净的音频信号。图2提供了一个前置放大器方案,可通过按键控制两个立体声声道。用DS1802构成音量控制电路时,需要将交流信号偏置在直流电源范围内,否则,DS1802会将低于GND、高于VCC的音频信号钳位掉,DS1802可以采用3V或5V电源。由于音频信号通常是对称的,所以,最好将直流偏置设置在VCC/2,以获得最大的音频信号摆幅。图2(a)是一个惠斯通桥电路,可用来将输入信号偏置在VCC/2。该电路允许交流信号通过位于中间位置的电阻(电位器),来对电阻两端进行相同的直流偏置。这一点对于数字电位器非常关键,因为过零检测器是在电位器两端电压为零时切换电位器的位置,因而,可以消除由于数字电位器的非连续切换所造成的噼啪声和砰然声。图2(b)是在图(a)基础上构建的电路,该电路的输入阻抗为13.7kΩ,桥电路和输入电容造成的信号衰减为1.2dB(20Hz)。此外,还需要在靠近DS1802和MAX4167的VCC引脚加旁路电容。
 
数字电位器缺点的解决方法:
数字电位器的额定阻值差大,一般在(20-30)%,主要是由P型硅扩散层的表面电阻率及内部开关的导通电阻等工艺方面的差异引起的。
数字电位器的温度系数大,选择双数字电位器将可变增益差分放大器设计,则可始终保持集成运放的同相端和反相端对外的电阻相等,从而始终保持很高的CMRR,抑制了温漂误差。
数字电位器的通频带一般较窄,主要是由于数字电位器内存在杂散电容,频率响应受RC时间常数的限制。
数字电位器受CMOS工艺的限制,数字电位器的滑动段允许通过电流较小,一般不超过3ma,电流过大会使、器件过早失效。
数字电位器一般不能直接接负电源,但在构成分压器时,有时候需要输出正负电压,可以得到一定范围可正可负的分压输出。